首页> 外文OA文献 >Necessary and Sufficient Conditions for Surrogate Functions of Pareto Frontiers and Their Synthesis Using Gaussian Processes
【2h】

Necessary and Sufficient Conditions for Surrogate Functions of Pareto Frontiers and Their Synthesis Using Gaussian Processes

机译:帕累托替代函数的充要条件   利用高斯过程进行前沿及其合成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper introduces the necessary and sufficient conditions that surrogatefunctions must satisfy to properly define frontiers of non-dominated solutionsin multi-objective optimization problems. These new conditions work directly onthe objective space, thus being agnostic about how the solutions are evaluated.Therefore, real objectives or user-designed objectives' surrogates are allowed,opening the possibility of linking independent objective surrogates. Toillustrate the practical consequences of adopting the proposed conditions, weuse Gaussian processes as surrogates endowed with monotonicity soft constraintsand with an adjustable degree of flexibility, and compare them to regularGaussian processes and to a frontier surrogate method in the literature that isthe closest to the method proposed in this paper. Results show that thenecessary and sufficient conditions proposed here are finely managed by theconstrained Gaussian process, guiding to high-quality surrogates capable ofsuitably synthesizing an approximation to the Pareto frontier in challenginginstances of multi-objective optimization, while an existing approach that doesnot take the theory proposed in consideration defines surrogates which greatlyviolate the conditions to describe a valid frontier.
机译:本文介绍了替代函数在多目标优化问题中正确定义非支配解的边界所必须满足的充要条件。这些新条件直接作用于目标空间,因此对解决方案的评估方式一无所知。因此,允许使用实际目标或用户设计的目标替代物,从而有可能将独立的目标替代物联系起来。为了说明采用拟议条件的实际后果,我们将高斯过程用作具有单调性软约束和可调整程度的灵活性的替代物,并将它们与常规高斯过程和文献中最接近于本文提出的方法的前沿替代方法进行比较。这篇报告。结果表明,这里提出的必要条件和充分条件都可以通过约束高斯过程得到很好的管理,从而可以在高挑战性的多目标优化实例中找到能够适当地合成帕累托边界近似值的高质量替代方案,而现有的方法并未采用提出的理论考虑中的替代品会大大违反描述有效边界的条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号